PC Hardware support

- √ x86-64 CPU (Intel or AMD), supported by Linux
- ✓ Minimum 4 Go RAM, more in case of RAM disk usage or encoding
- ✓ Operating system is provided and maintained by OpenHeadend
- ✓ At least one available USB port
- √ Hard drive/SSD is optional, for file storage (supported by Linux)

Management

- ✓ Totally SNMP-based with a provided MIB and documentation, and SNMP traps
- ✓ Innovative Web 2.0 user interface
- ✓ RESTful control API
- ✓ Automatic wireless management interface
- √ Master/slave configuration replication

Event scheduler

- ✓ Execute jobs (configuration changes, file extraction, remote SNMP commands) at given times
- ✓ Schedules are triggered punctually, periodically or manually, or automatically on a function trigger

Inputs and outputs

- ✓ Ethernet 10/100/1000/10G (supported by Linux) with static or DHCP configuration
- ✓ UDP/RTP over IPv4 (multicast and unicast), configuration of port, TTL, TOS, MTU, source address and port
- ✓ TS files on a local hard drive or a NAS mounted with NFS or CIFS
- ✓ DVB-S, S2, T, T2, C and ATSC using cards supported natively by the linuxtv.org project (input only), with configuration of frequency, symbol rate, modulation, channel bandwidth, output voltage, 22kHz pulse, inversion, FEC, roll-off factor, pilot, diseqc (if applicable)
- ✓ DVB-ASI using cards from DVEO (input only)
- ✓ SDI, HD-SDI, HDMI and analog using cards from Blackmagic (input only)

Monitor failover functions

 Perform failover at cluster level in case of hardware failure

Forward functions

- ✓ Copy a TS live stream identically to another output
- ✓ Input and output: UDP/RTP over IPv4, multicast or unicast, RTMP or icecast server, HLS service or RTSP server (input only)

OPENheadend

Technical specifications

Switch functions

✓ Switch at the TS level between several live streams

✓Inputs and output: UDP/RTP over IPv4

Monitor functions

√ Check characteristics of a TS

stream (bitrate, presence of a specific PID, presence of a number of elementary streams of a given type, presence of video frames which are not still frames, BER of a DVB tuner, discontinuities or errors in the input)

- ✓ Able to switch its output from input to fallback either manually or in case of error (switch-back is manual or automatic depending on configuration)
- ✓ Trigger may be caught by a schedule to change local or remote configuration
- ✓ Inputs and output: UDP/RTP over IPv4, multicast

Transmit input and output functions

- ✓ Transmit a TS stream in unicast between two machines, using one or several links and packet retransmission (typically used for stream contribution over public Internet)
- ✓ Input: UDP/RTP over IPv4
- ✓ Output: UDP/RTP over IPv4
- ✓ Parameters: retransmission window, relative capacity of aggregated links

Record functions

- ✓ Write a TS source to a storage, exactly as it is received
- ✓ Input: UDP/RTP over IPv4
- √ The web interface allows extracting programs from the storage (catch-up TV)

Hint functions

- ✓ Search for reference video sequences in a live stream recorded by a record function
- ✓ Inputs: reference video sequences stored as TS files
- ✓ Send a trap when a sequence is found, add markers in the web interface to extract programs (typical application: assisted catch-up TV extraction), and optionally start a schedule

Playout functions

- ✓ Play a TS source to an output, and switches between sources
- Optionally rewrite continuity counters and PCR/PTS/ DTS
- ✓ Inputs: TS files or recorded stream with a record function and a delay in milliseconds (time-delay)
- ✓ Output: UDP/RTP over IPv4

Demux functions

- ✓ Split a TS stream according to SID/PID selection
- ✓ Input: DVB-S, S2, T, C, ATSC, DVB-ASI or UDP/RTP over IPv4 (typically MPTS)
- ✓ Outputs: UDP/RTP over IPv4
- ✓ Support configuration of output network ID, network name, transport stream ID, and pass-through of DVB conformance tables and EIT schedules, and remapping of ONID, service ID, service name, and PIDs

Remux functions

- Remux a TS stream and transcode elementary streams, optionally in low latency mode
- ✓ Input and output: UDP/RTP over IPv4 and TS, MP4, FLV, MKV, AVI, etc. files
- ✓ Video decoding: MPEG-2 up to MP@HL, MPEG-4 AVC up to HP@L5.0 or progressive HEVC
- ✓ Video encoding: MPEG-2, MPEG-4 AVC, or progressive HEVC (performance depending on hardware), features: MBAFF, adaptive GOP structure, macroblock tree rate control, psychovisual optimizations, noise reduction, scene cut detection, look-ahead, resizing, deinterlacing, 4:2:0, 4:2:2 and 4:4:4, 10bit (depending on codec)
- ✓ Audio decoding: MPEG-1/2 layers I, II and III, AAC, A/ 52, A/52e
- ✓ Audio encoding: MPEG-1/2 layers II and III, AAC, HE-AACv1, HE-AACv2 (ADTS), A/52, A/52e
- ✓ Multiplexing: T-STD compliant transport stream, CBR, IPTV CBR or IPTV capped VBR, PID remapping

Acquire functions

- ✓ Acquire a raw video signal (eg. from SDI) and encode it
- ✓ Input: Blackmagic DeckLink devices, OP47 subtitles, SCTF-104
- ✓ Output: UDP/RTP over IPv4, same codecs as the remux functions

Mux functions

 Create a multiple program transport stream from several UDP/RTP single program transport streams

Extract functions

✓ Extract whole or part of files in a directory (batch processing) and feeds it into one or several remux or copy functions

Copy functions

✓ Copy files or thumbnails to a directory, typically on a NAS, or to an FTP/SFTP server

OPENheadend

Technical specifications

(De)scramble functions

√(De)scramble a UDP/RTP TS stream

Grid input, acquire, image and output functions

✓Act as an SDI grid, but with UDP/ RTP inputs and outputs, raw video input or JPEG/PNG files

- ✓ Able to switch between elementary streams seamlessly, both video and audio (separately), on any kind of event, sequence detection with grid hint function, SCTE-35 and SCTE-104 splicing, monitor function feedback, or manually
- ✓ Same codecs as the remux function
- All following functions use the inputs and outputs of the grid:

Mosaic functions

- ✓ Create a video stream compositing several video sources, with or without audio bargraphs
- √ The background is also a video source that can be animated or fixed

Overlay functions

 Create a video stream compositing overlays at defined locations over a background video, with optional animations

Monitor delay functions

✓ Compare video streams to a reference video stream, check if they are similar (overall picture appearance, not taking into account resolution or encoding artifacts), and accordingly compute the delay between streams

Monitor still functions

 Check whether all pictures of a video stream are identical, and alert if it is the case

Monitor r128 functions

✓ Calculate R128 loudness and check whether it is within defined bounds, and alert if it is not the case

Grid hint functions

- ✓ Search for reference video sequences in a live stream, and frame-accurately trigger schedules on the beginning and end of the sequences
- ✓ Suitable for video-based content replacement
- ✓ Uses TS files for reference video sequences

Watermark embed and detect functions

 Embed or detect a Kantar watermark in an audio stream